La formation du système solaire

Formation
Les différentes étapes de la formation du système solaire : contraction d’un nuage d’hydrogène et d’hélium, aplatissement du système, formation de planétésimaux, mise en route des réactions nucléaires au centre, apparition du système sous sa forme actuelle. Source inconnue.

Tout modèle de la formation du système solaire doit être en mesure d’expliquer l’état actuel de celui-ci. Avant de voir comment notre système s’est formé, rappelons donc quelques-unes de ses caractéristiques.

Le système solaire contient huit planètes. Celles-ci peuvent être classées en deux groupes : les planètes telluriques, de dimension et de masse réduites mais de forte densité (Mercure, Vénus, la Terre et Mars), et les géantes gazeuses, de dimension et de masse beaucoup plus grandes mais de faible densité (Jupiter, Saturne, Uranus et Neptune).

Les orbites des planètes autour du Soleil sont à peu près toutes contenues dans un même plan, appelé le plan de l’écliptique. Le système solaire apparaît donc très aplati de l’extérieur. C’est d’ailleurs pour cette raison qu’un observateur terrestre les voit toujours se déplacer dans une bande très étroite du ciel appelée le Zodiaque.

Le moment angulaire dans le système solaire

Une caractéristique importante car contraignante pour les modèles de formation est la répartition du moment angulaire. Cette grandeur caractérise la rotation ou la révolution d’un corps et s’obtient en combinant la masse, la vitesse de déplacement angulaire et la distance à l’axe de rotation ou de révolution.

La théorie montre que le moment angulaire d’un système isolé doit être invariable dans le temps. Le système solaire lors de sa formation avait donc un moment angulaire identique à celui que nous pouvons encore mesurer à l’heure actuelle. Par contre, la répartition du moment entre le Soleil et les planètes peut très bien avoir varié.

De nos jours, alors que notre étoile contient à elle seule 99 pour cent de la masse totale du système solaire, elle ne contient que 3 pour cent de son moment angulaire total. Ceci est un point très important qui permet d’éliminer les théories trop simplistes incapables d’expliquer la distribution actuelle.

La formation du système solaire

Passons donc à l’histoire de la formation de notre système. La description qui suit est un modèle globalement admis, même si ses détails font encore l’objet de maintes discussions.

Au départ, il y a environ 10 milliards d’années, ce qui deviendra un jour le système solaire n’est qu’une fraction minuscule d’un gigantesque nuage d’hydrogène et d’hélium qui poursuit son ballet autour du centre galactique.

Au fur et à mesure que le temps passe, ce nuage se contracte doucement et s’enrichit en éléments plus lourds lors de l’explosion d’étoiles massives aux alentours, ce qui explique que l’abondance actuelle d’éléments lourds est de l’ordre de 2 pour cent.

Finalement, il y a 4,6 milliards d’années, sous l’effet de sa propre gravité, ce nuage s’effondre sur lui-même et se fragmente en une série de nuages de dimension plus réduite dont l’un deviendra le système solaire.

L’évolution du protosystème solaire

Le protosystème maintenant bien défini continue à se contracter de plus en plus. Mais, d’après la loi de conservation du moment angulaire, si la taille d’un corps se réduit, sa vitesse de rotation doit augmenter pour compenser. La contraction du protosystème s’accompagne donc d’une forte augmentation de la vitesse de rotation.

De plus, comme le protosystème n’est pas rigide, un fort aplatissement se produit dans le plan perpendiculaire à l’axe de rotation. On se retrouve ainsi finalement avec une concentration de matière au centre, la protoétoile, entourée d’un disque de matière appelé le disque protoplanétaire.

C’est ici qu’intervient notre connaissance de la distribution du moment angulaire. Dans les modèles de formation les plus simples, le système solaire est le résultat d’une simple contraction d’un nuage de gaz en rotation. Mais ceci devrait se traduire par une vitesse de rotation du Soleil incompatible avec le fait qu’il ne possède que 3 pour cent du moment angulaire total.

En réalité, la protoétoile va être ralentie sous l’action de forces magnétiques. Dans les conditions physiques qui règnent à l’époque, une variation du champ magnétique entraîne automatiquement une variation de la distribution de matière et réciproquement – on dit que les lignes de champ magnétique sont gelées dans la matière.

Or les lignes de champ magnétique qui traversent le protosystème sont déformables mais seulement de façon limitée. Cette rigidité est transmise à la matière, ce qui crée un lien entre la protoétoile et le disque protoplanétaire. C’est grâce à ce lien que la région centrale est freinée et perd peu à peu son moment angulaire au profit du disque qui tourne de plus en plus vite.

Sous l’effet du ralentissement, la force centrifuge subie par la protoétoile baisse et finalement l’éjection de matière s’arrête. A partir de ce moment, les deux sous-systèmes précédemment liés ont une évolution indépendante.

Au centre, la protoétoile continue de se contracter et sa température augmente rapidement. Finalement, les réactions nucléaires de fusion se mettent en route et l’étoile que nous connaissons apparaît.

La formation des planètes

Dans le disque protoplanétaire, les atomes s’agglomèrent au fur et à mesure de leurs rencontres pour devenir des poussières. Celles-ci se regroupent elle-mêmes pour former des petits corps appelés planétésimaux. Cette étape dure quelques millions d’années.

Du fait de la turbulence dans le disque, des fluctuations de densité apparaissent et évoluent pour aboutir à des corps de grande dimension, dans un processus appelé l’accrétion. Ces corps continuent à capturer les planétésimaux qu’ils trouvent sur leur chemin et atteignent finalement le stade de planète.

La principale phase d’accrétion se termine il y environ 4,4 milliards d’années, même si d’intenses bombardements se poursuivent encore pendant un milliard d’années.

L’aspect final des planètes dépend de la distance au Soleil. Près de celui-ci, les éléments légers reçoivent beaucoup d’énergie et sont trop chauds pour se condenser. Le matériau qui constitue ces planètes est donc riche en éléments lourds, tels le fer ou le silicium, ce qui explique leur forte densité.

Loin du Soleil, l’accrétion de planétésimaux est à l’origine d’un noyau dense qui constitue le point de départ pour une croissance ultérieure. Autour de ce noyau s’accumule une enveloppe de gaz et l’on aboutit à une planète très volumineuse et massive, mais essentiellement constituée d’hydrogène et donc peu dense.

HL Tauri
Une image extraordinaire du disque protoplanétaire de l’étoile HL Tauri, située à 450 années-lumière dans la constellation du Taureau. L’image a été prise par l’observatoire ALMA. Dans le disque qui s’est formé autour de l’étoile centrale, les particules de poussière interagissent et fusionnent pour former des corps de plus en plus grands qui deviendront astéroïdes, comètes et planètes. La formation de ces dernières va nettoyer le disque de poussière et créer les bandes sombres que l’on observe ici. Cette image fera date puisqu’il s’agit de la première observation d’une telle structure en bandes. Crédit : ALMA (ESO/NAOJ/NRAO)

Mis à jour le 24 août 2023 par Olivier Esslinger